These are only a few sample problems to *help* you prepare for the exam. You should also be certain that you completely understand the assigned homework, in-class work, and your class notes.

- 1. You should, of course, be quite proficient at finding antiderivatives using integration-by-parts and u-substitution.
- 2. Consider the graph of $f(x) = \frac{1}{x}$ for $x \ge 1$.
 - (a) Find the area below the graph and above the x-axis.
 - (b) Find the volume of the solid formed when the graph is rotated about the x-axis.
 - (c) Does anything seem strange about these answers?
- 3. Find the seventh order Taylor polynomial for $f(x) = \sin(x)$ at $x_0 = \frac{\pi}{2}$. How close will $P_7(x)$ approximate $\sin(2)$?
- 4. Using only a four function calculator $(+, -, \times, /)$ and that $\pi \approx 3.141$, approximate $\cos(7)$ accurate within 0.01.
- 5. Find the exact value of $\int_{1}^{\infty} e^{-x}x \ dx$.
- 6. Do the following integrals converge or diverge? You do not need to find the values of the convergent integrals.

(a)
$$\int_{2}^{\infty} \frac{x}{x^2 - 2} \, dx$$

(b)
$$\int_0^\infty \frac{1}{x^4 + \sqrt[3]{x}} \, dx$$

(c)
$$\int_{1}^{\infty} \frac{x^2 + 1}{x^2} dx$$

7. Let
$$I = \int_{1}^{\infty} \frac{1}{x^5 + 3x} dx$$

- (a) Show that I converges.
- (b) Find a definite integral that will approximate I within 0.002 of its true value.
- (c) Explain in detail how to approximate I within 0.004 of the true value.
- 8. Is more work done to raise a 60-lb bucket from a 60-ft well or a 50-lb bucket from a 70-ft well? Assume that the rope weight 0.25 lb/ft.
- 9. Determine if the following sequences converge or diverge.

(a)
$$\left\{\frac{\ln(k)}{\sqrt[3]{k+1}}\right\}_{k=1}^{\infty}$$

(b)
$$\{a_k\}_{k=1}^{\infty}$$
 where $a_k = \int_1^k \frac{1}{1+x^2} dx$

T. Ratliff