Some Interface Issues

• Maple 10 can be somewhat slow to open, but once it's ready, it's an incredibly powerful and very cool tool.

There are two different interfaces for Maple. I think it's clearest to use the Worksheet Mode, which is the default on the machines in room A102. The mode can be changed under the menu option

Tools – Options – Interface on Windows machines, or Maple 10 – Preferences – Interface on Mac OS machines

- The palettes on the left can be very handy for providing templates for Maple's syntax.
 - The Expression and Common Symbols palettes will be especially useful for Calculus.
- The **Help** menu is your friend. Use it to find the exact syntax and options for the commands.

The Help – Quick Reference option is also worth exploring.

- There are a few things about Maple's syntax that might drive you crazy:
 - Every line must end with a semi-colon.
 - Always include the * for multiplication, like 3*(x+y) for 3(x+y).
 - Maple is case-sensitive: plot is **not** the same as Plot.
- There are also a couple tricks that will make your life much easier:
 - Maple recognizes % as the output from the last statement. This can save you quite a bit of time since you don't
 have to retype the previous expression.
 - You can also access the output from any statement by pressing <cntrl>-L in Windows or <cmd>-L on a Mac.
- If you've never used Maple before, don't get overwhelmed or discouraged. It's a remarkable tool that will help you explore and learn mathematics more deeply.

T. Ratliff Fall 2006

Some of the Commands You'll Need for this Semester

plot(sin(x), x=-2Pi);	Plots $\sin(x)$ for $-2 \le x \le \pi$
plot([x^2, sin(x)], x=-2Pi);	Plots the two functions x^2 and $\sin(x)$ for $-2 \le x \le \pi$ on the same set of axes
sqrt(42+x)	Just as you expect, this is $\sqrt{42+x}$
Pi	The constant π . Notice the capital P
exp(x)	The natural exponential function e^x To get the constant e , you use $\exp(1)$
<pre>simplify();</pre>	Attempts to algebraically simplify an expression
$solve(x^2+6x-5=0);$	Tries to solve the equation <i>exactly</i> without decimal approximation
<pre>Diff(cos(x^2)*tan(x), x);</pre>	The inert form of the differentiation function.
Int(cos(x^2)*x^2, x);	The inert form of the antidifferentiation function. The advantage of the inert form is that you can check if you have entered the expression correctly.
<pre>value();</pre>	The <i>exact</i> value of an expression. You can combine this with the Diff() or Int() commands to find a value.
<pre>evalf();</pre>	A numeric approximation of a value
w := x^2;	Defines w to be the expression x^2 Whenever Maple sees w , it will substitute x^2
$f := x -> x^3 + cos(x);$	Defines a function $f(x) = x^3 + \cos(x)$ Then $f(Pi)$ would be $\pi^3 + \cos(\pi)$
unassign('w');	Unassigns w
restart;	Clears all definitions and reinitializes Maple
with(student);	Loads the student calculus package which is needed for the commands leftsum() rightsum(), middlesum(), leftbox(), rightbox(), and middlebox().
leftbox(cos(x^2), x=-12, 20);	Shows a graph of L_{20} , the left sum with 20 subdivisions, for the integral $\int_{-1}^{2} \cos(x^2) dx$.
leftsum(cos(x^2), x=-12, 100);	Computes L_{100} for $\int_{-1}^{2} \cos(x^2) dx$. You will need to use value(%); or evalf(%); to get the value.
<pre>with(plots);</pre>	Loads the plots package which is need for the rest of the commands in this section
<pre>polarplot(cos(2*theta), theta=02*Pi);</pre>	Plots the polar curve $r = \cos(2\theta)$ for $0 \le \theta \le 2\pi$
p1:=plot(); p2:=plot(); display(p1,p2);	Allows you to display multiple plot structures on the same set of axes
tubeplot([x,0,0], x=04*Pi, radius= $sin(x)+2$);	This will draw the surface obtained by rotating the graph of $y = \sin(x) + 2$ about the x-axis from $x = 0$ to $x = 4\pi$.

T. Ratliff Fall 2006