I. Do the following series converge or diverge? If the series converges, use Maple's 'Sum' command to calculate S_{100}.

1. $\sum_{k=1}^{\infty} \frac{10}{2^{k}+2}$
2. $\sum_{k=2}^{\infty} \frac{4^{k}}{3^{k}-5}$
3. $\sum_{k=3}^{\infty} \frac{1}{k+2}$
II. For each series that converges, determine how close S_{100} is to the actual value of the series by bounding the tail R_{100}. Hint: Find a geometric series that is larger than R_{100}
III. Show that $\sum_{k=3}^{\infty} \frac{2^{k}}{5^{k}+6 k}$ converges and approximate the series within 10^{-10} of its actual value.
