Definition: A vector space is a nonempty set of objects V, called vectors, which have two operations defined: addition of vectors and multiplication by scalars (real numbers). For all $u, v, w \in V$ and for all scalars c, d, the following ten axioms must hold:

1. $u + v \in V$

2.
$$u + v = v + u$$

3.
$$(u+v) + w = u + (v+w)$$

- 4. There exists a vector $0 \in V$ such that u + 0 = u
- 5. For all $u \in V$, there is a vector $-u \in V$ such that u + (-u) = 0
- 6. $cu \in V$
- 7. c(u+v) = cu + cv
- 8. (c+d)u = cu + cd
- 9. c(du) = (cd)u

10.
$$1u = u$$

Determine if the following subsets H are subspaces of the vector space V.

- 1. *H* is the *x*-axis, $V = \mathbb{R}^3$
- 2. *H* is the line $x = 2, V = \mathbb{R}^2$
- 3. *H* is the first octant, $V = \mathbb{R}^3$
- 4. $H = \{ p(t) \in \mathbb{P}_4 \mid p(t) = a + bt^4 \}, V = \mathbb{P}_4$
- 5. $H = \{ p(t) \in \mathbb{P}_4 \mid p(t) = 1 + bt^4 \}, V = \mathbb{P}_4$

Let
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 4 & 1 & 5 \end{bmatrix}$$
.

- 1. Find an explicit algebraic description for nul(A). What is the geometric interpretation?
- 2. Find an explicit algebraic description for col(A)). What is the geometric interpretation?