Let
$$\vec{\mathbf{u_1}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{\mathbf{u_2}} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, $\vec{\mathbf{u_3}} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$, and $\vec{\mathbf{y}} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

- 1. Verify that $\{\vec{\mathbf{u_1}}, \vec{\mathbf{u_2}}, \vec{\mathbf{u_3}}\}$ is an orthogonal basis for \mathbb{R}^3 .
- 2. Find $\hat{y_1}$, the orthogonal projection of \vec{y} onto $\vec{u_1}$.
- 3. Find $\hat{y_2}$, the orthogonal projection of \vec{y} onto $\vec{u_2}$.
- 4. Find $\hat{y_3}$, the orthogonal projection of \vec{y} onto $\vec{u_3}$.
- 5. Verify that $\vec{y} = \hat{y_1} + \hat{y_2} + \hat{y_3}$.