Let
$$\vec{\mathbf{u_1}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\vec{\mathbf{u_2}} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, and $\vec{\mathbf{u_3}} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$

- 1. Find a vector $\vec{\mathbf{x}}$ in \mathbb{R}^3 that is orthogonal to $\vec{\mathbf{u_1}}$.
- 2. Find a vector $\vec{\mathbf{y}}$ that is orthogonal to both $\vec{\mathbf{u_1}}$ and $\vec{\mathbf{u_2}}$.
- 3. Find all vectors $\vec{\mathbf{z}}$ in \mathbb{R}^3 that are orthogonal to $\vec{\mathbf{u_1}}$, $\vec{\mathbf{u_2}}$, and $\vec{\mathbf{u_3}}$.

4. Let
$$A = \begin{bmatrix} \vec{u_1} \\ \vec{u_2} \\ \vec{u_3} \end{bmatrix}$$
. How is each \vec{z} from part 3 related to row(A)?

Which fundamental subspace of A do the \vec{z} lie in?